Preliminary Technical Data

FEATURES

High Speed
$300 \mathrm{MHz}, 1000 \mathrm{~V} / \mu \mathrm{s} @ \mathrm{G}=1, \mathrm{~V}_{\mathrm{o}}=1 \mathrm{~V}$ p.p
High CMRR: 70dB @ 10MHz
High Differential Input Impedance: $6 \mathrm{M} \Omega$
Imput Common Mode Range: $\pm 10 \mathrm{~V}$ ($\pm 12 \mathrm{~V}$ Supplies)
User Adjustable Gain
Wide Power Supply range: +4.5 V to $\pm \mathbf{1 2 V}$
Fast Settling: 2 ns to $\mathbf{1 \%}$, 5 ns to $\mathbf{0 . 1 \%}$
Low Noise: 12 nV/V $\mathbf{H z}$
Small Packaging: 32-Pin 5×5 mm LFCSP Package

APPLICATIONS

RGB Video Receiver
KVM (Keyboard-Video-Mouse)
UTP (Unshielded Twisted Pair) Receiver

GENERAL DESCRIPTION

The AD8143 is a triple, low cost differential to single ended receiver specifically designed for receiving RGB (red-greenblue) signals over twisted pair cable but can also be used for receiving any type of analog signal or high speed data transmission. Two auxiliary comparators are also provided to receive digital or sync signals. The AD8143 can be used in conjunction with the AD8133 triple, differential driver to provide a complete low cost solution for RGB over Category5 unshielded twisted pair (UTP) cable applications including KVM (keyboard-video-mouse).

The excellent common-mode rejection ($60 \mathrm{~dB} @ 10 \mathrm{MHz}$) of the AD8143 allows for the use of low cost unshielded twisted pair cables in noisy environments.

The AD8143 has a wide power supply range from single 5 V supply to $\pm 12 \mathrm{~V}$, which allows for a wide common-mode range. The wide common mode input range of the AD8143 maintains signal integrity in systems where the ground potential is a few volts different between the drive and receive ends without the use of isolation transformers.

The AD8143 is stable at a gain of 1 . The closed-loop gain can easily be set by external resistors.

The AD8143 is available in a $5 \mathrm{~mm} \times 5 \mathrm{~mm} 32$ lead LFCSP package and is rated to work over the extended industrial temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Specifications with ± 12 V Supply ... 3	Outline Dimensions .. 6
Specifications with ± 5 V Supply .. 4	

Revision 0: Initial Version (01/10/2004)
Revision A: Changed to 32 pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP package (12/22/2004)
Revision B: Changed Spec Tables re: R_{L}, SSBW, LSBW ($\mathrm{V}_{\text {out }}=1 \mathrm{~V}_{\mathrm{pp}} \& 2 \mathrm{~V}_{\mathrm{pp}}$), SR, $\mathrm{I}_{\mathrm{s}}(03 / 07 / 2005)$, updated description (3/7/2005)

AD8143

AD8143- SPECIFICATIONS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 12 \mathrm{~V}, \mathrm{REF}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{G}=+1, \mathrm{~T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3dB Bandwidth	$\mathrm{V}_{\text {out }}=0.2 \mathrm{Vp}$-p	360			MHz
	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}$	330			MHz
	$\mathrm{V}_{\text {out }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	250			MHz
Bandwidth for 0.1dB Flatness	$V_{\text {out }}=0.2 \mathrm{Vp}-\mathrm{p}$	50			MHz
Slew Rate	$V_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}$	1000			V/ $/ \mathrm{s}$
Settling Time	$\mathrm{V}_{\text {out }}=2 \mathrm{Vp}$-p, 1.0%	2.0			ns
	$V_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, 0.1 \%$	5.0			ns
Rise and Fall Time	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 10 \%$ to 90%	1.0			ns
Output Overdrive Recovery		40			ns
NOISE/DISTORTION					
Second Harmonic	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}$	-75			dBc
Third Harmonic	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}$	-78			dBC
Crosstalk	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{MHz}$	-60			dB
Input Voltage Noise (RTI)	$\mathrm{f} \geq 10 \mathrm{kHz}$	12			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Differential Gain Error	NTSC, 200 IRE, $\mathrm{R}_{\mathrm{L}} \geq 150 \Omega$	0.15			\%
Differential Phase Error	NTSC, 200 IRE, $\mathrm{R}_{\mathrm{L}} \geq 150 \Omega$	0.15			。
INPUT CHARACTERISTICS					
Common-Mode Rejection	$\mathrm{f}=\mathrm{DC}$ to $100 \mathrm{kHz}, \mathrm{V}$ cm $=-3 \mathrm{~V}$ to +3.5 V	110			dB
	$V_{\text {cm }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=10 \mathrm{MHz}$	70			dB
	$V_{C M}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=100 \mathrm{MHz}$	40			dB
Common-Mode Voltage Range	$\mathrm{V}_{+ \text {+1 }}-\mathrm{V}_{-\mathrm{IN}}=0 \mathrm{~V}$	± 10.5			V
Differential Operating Range		± 2.5			V
Resistance	Differential	6			$\mathrm{M} \Omega$
	Common-Mode	4			$\mathrm{M} \Omega$
Capacitance	Differential		3		pF
	Common-Mode		4		pF
DC PERFORMANCE					
Open-Loop Gain	$V_{\text {OUT }}= \pm 1 \mathrm{~V}$		74		dB
Input Offset Voltage			0.5	10	mV
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (+IN, -IN)			± 0.5	± 2.0	$\mu \mathrm{A}$
Input Bias Current (REF, FB)			± 1.0	± 3.5	$\mu \mathrm{A}$
Input Bias Current Drift	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}(+\mathrm{IN},-\mathrm{IN}, \mathrm{REF}, \mathrm{FB})$		5		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Offset Current	(+ IN, -IN, REF, FB)		± 0.08	± 0.4	$\mu \mathrm{A}$
Input Offset Current Drift	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		0.2		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
OUTPUT PERFORMANCE					
Voltage Swing	$\mathrm{R}_{\text {LOAD }}=150 \Omega / 1 \mathrm{k} \Omega$	3.6 / 4.0			$\pm \mathrm{V}$
Output Current			40		mA
Short Circuit Current			60		mA
POWER SUPPLY					
Quiescent Supply Current	Total		45		mA

AD8143- SPECIFICATIONS

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VS}= \pm 5 \mathrm{~V}, \mathrm{REF}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{G}=+1, \mathrm{~T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3dB Bandwidth	$\mathrm{V}_{\text {out }}=0.2 \mathrm{Vp}-\mathrm{p}$		300		MHz
	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}$		250		MHz
	$V_{\text {out }}=2 \mathrm{~V}$ p-p, $\mathrm{R}_{\mathrm{L}}=150 \Omega$		250		MHz
Bandwidth for 0.1dB Flatness	$V_{\text {out }}=0.2 \mathrm{Vp}-\mathrm{p}$		50		MHz
Slew Rate	$\mathrm{V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}$		1000		V/ $/ \mathrm{s}$
Settling Time	$\mathrm{V}_{\text {out }}=2 \mathrm{Vp}$-p, 1.0\%		2.0		ns
	$V_{\text {out }}=2 \mathrm{Vp}$-p, 0.1%		5.0		ns
Rise and Fall Time	$V_{\text {out }}=1 \mathrm{Vp}$-p, 10% to 90%		1.0		ns
Output Overdrive Recovery			40		ns
NOISE/DISTORTION					
Second Harmonic	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}$		-75		dBc
Third Harmonic	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}$		-78		dBc
Crosstalk	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{MHz}$		-60		dB
Input Voltage Noise (RTI)	$\mathrm{f} \geq 10 \mathrm{kHz}$		12		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Differential Gain Error	NTSC, 200 IRE, $\mathrm{R}_{\mathrm{L}} \geq 150 \Omega$		0.15		\%
Differential Phase Error	NTSC, 200 IRE, $\mathrm{R}_{\mathrm{L}} \geq 150 \Omega$		0.15		。
INPUT CHARACTERISTICS					
Common-Mode Rejection	$\mathrm{f}=\mathrm{DC}$ to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{cm}}=-3 \mathrm{~V}$ to +3.5 V		110		dB
	$\mathrm{V}_{\text {cm }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=10 \mathrm{MHz}$		70		dB
	$V_{\text {CM }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=100 \mathrm{MHz}$		40		dB
Common-Mode Voltage Range	$\mathrm{V}_{+ \text {IN }}-\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V}$		± 3.8		V
Differential Operating Range			± 2.5		V
Resistance	Differential		6		$\mathrm{M} \Omega$
	Common-Mode		4		$\mathrm{M} \Omega$
Capacitance	Differential		3		pF
	Common-Mode		4		pF
DC PERFORMANCE					
Open-Loop Gain	$V_{\text {out }}= \pm 1 \mathrm{~V}$		74		dB
Input Offset Voltage			0.5	10	mV
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (+IN, -IN)			± 0.5	± 2.0	$\mu \mathrm{A}$
Input Bias Current (REF, FB)			± 1.0	± 3.5	$\mu \mathrm{A}$
Input Bias Current Drift	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}(+\mathrm{IN},-\mathrm{IN}, \mathrm{REF}, \mathrm{FB})$		5		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Offset Current	(+ IN, -IN, REF, FB)		± 0.08	± 0.4	$\mu \mathrm{A}$
Input Offset Current Drift	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		0.2		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
OUTPUT PERFORMANCE					
Voltage Swing	$\mathrm{R}_{\text {LOAD }}=150 \Omega / 1 \mathrm{k} \Omega$	$3.6 / 4.0$			$\pm \mathrm{V}$
Output Current			40		mA
Short Circuit Current			60		mA
POWER SUPPLY					
Quiescent Supply Current	Total		35		mA

AD8143

AD8143- SPECIFICATIONS

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vs}=+5 \mathrm{~V}, \mathrm{REF}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{G}=+1, \mathrm{~T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3dB Bandwidth Bandwidth for 0.1dB Flatness Slew Rate Settling Time Rise and Fall Time Output Overdrive Recovery	$\begin{aligned} V_{\text {out }} & =0.2 \mathrm{Vp}-\mathrm{p} \\ \mathrm{~V}_{\text {out }} & =2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ \mathrm{~V}_{\text {out }} & =0.2 \mathrm{Vp}-\mathrm{p} \\ \mathrm{~V}_{\text {out }} & =2 \mathrm{Vp}-\mathrm{p} \\ V_{\text {out }} & =2 \mathrm{Vp}-\mathrm{p}, 1.0 \% \\ \mathrm{~V}_{\text {out }} & =2 \mathrm{Vp}-\mathrm{p}, 0.1 \% \\ \mathrm{~V}_{\text {out }} & =1 \mathrm{Vp}-\mathrm{p}, 10 \% \text { to } 90 \% \end{aligned}$		$\begin{gathered} 210 \\ 130 \\ 30 \\ 950 \\ 2.0 \\ 5.0 \\ 1.0 \\ 40 \\ \hline \end{gathered}$		MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns ns ns
NOISE/DISTORTION Second Harmonic Third Harmonic Crosstalk Input Voltage Noise (RTI) Differential Gain Error Differential Phase Error	$\begin{aligned} & V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz} \\ & V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz} \\ & V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{MHz} \\ & \mathrm{f} \geq 10 \mathrm{kHz} \\ & \text { NTSC, } 200 \text { IRE, } R_{\mathrm{L}} \geq 150 \Omega \\ & \text { NTSC, } 200 \text { IRE, } R_{\mathrm{L}} \geq 150 \Omega \end{aligned}$		$\begin{gathered} -68 \\ -72 \\ -60 \\ 12 \\ 0.15 \\ 0.15 \end{gathered}$		dBc dBc dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ \%
INPUT CHARACTERISTICS Common-Mode Rejection Common-Mode Voltage Range Differential Operating Range Resistance Capacitance	$\begin{aligned} & f=D C \text { to } 100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{cM}}=-3 \mathrm{~V} \text { to }+3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=100 \mathrm{MHz} \\ & \mathrm{~V}_{+1 \mathrm{~N}}-\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V} \\ & \text { Differential } \\ & \text { Common-Mode } \\ & \text { Differential } \\ & \text { Common-Mode } \end{aligned}$	1.2	$\begin{gathered} 96 \\ 70 \\ 40 \\ \\ \pm 2.3 \\ 6 \\ 4 \\ 3 \\ 4 \end{gathered}$	3.8	dB dB dB V V $\mathrm{M} \Omega$ $M \Omega$ pF pF
DC PERFORMANCE Open-Loop Gain Input Offset Voltage Input Bias Current (+IN, -IN) Input Bias Current (REF, FB) Input Bias Current Drift Input Offset Current Input Offset Current Drift	$\text { Vout }= \pm 1 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}(+\mathrm{IN},-\mathrm{IN}, \mathrm{REF}, \mathrm{FB})$ (+IN, -IN, REF, FB) $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		$\begin{gathered} 71 \\ 0.5 \\ 10 \\ \pm 0.5 \\ \pm 1.0 \\ 5 \\ \pm 0.08 \\ 0.2 \end{gathered}$	$\begin{gathered} 10 \\ \\ \pm 2.0 \\ \pm 3.5 \\ \\ \pm 0.4 \end{gathered}$	dB mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $n A /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mathrm{nA} /{ }^{\circ} \mathrm{C}$
OUTPUT PERFORMANCE Voltage Swing Output Current Short Circuit Current	$\mathrm{RLOAD}=150 \Omega / 1 \mathrm{k} \Omega$	1.4/1.0	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	3.6 / 4.0	$\begin{aligned} & \pm \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
POWER SUPPLY Quiescent Supply Current	Total		35		mA

OUTLINE DIMENSIONS

Figure 1. 32-Lead Lead Frame Chip Scale Package [LFCSP], $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body (CP-32-3)—Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8143ACPZ-R2			
AD8143ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package (LFCSP)
AD8143ACPZ-RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package (LFCSP)	$\mathrm{CP}-32-3$

[^0]
[^0]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

